270 research outputs found

    Effect of Axial Agitator Configuration (Up-Pumping, Down-Pumping, Reverse Rotation) on Flow Patterns Generated in Stirred Vessels

    Get PDF
    Single phase turbulent flow in a tank stirred with two different axial impellers - a pitched blade turbine (PBT) and a Mixel TT (MTT)- has been studied using Laser Doppler Velocimetry. The effect of the agitator configuration, i.e. up-pumping, down-pumping and reverse rotation, on the turbulent flow field, as well as power, circulation and pumping numbers has been investigated. An agitation index for each configuration was also determined. In the down-pumping mode, the impellers induced one circulation loop and the upper part of the tank was poorly mixed. When up-pumping, two circulation loops are formed, the second in the upper vessel. The PBT pumping upwards was observed to have a lower flow number and to consume more power than when down-pumping, however the agitation index and circulation efficiencies were notably higher. The MTT has been shown to circulate liquid more efficiently in the up-pumping configuration than in the other two modes. Only small effects of the MTT configuration on the power number, flow number and pumping effectiveness have been observed

    Design of micromixers using CFD modelling

    Get PDF
    The effect of various geometrical parameters of a grooved staggered herringbone micromixer on the mixing performance has been investigated using Computational Fluid Dynamics. Mixing quality has been quantified with spatial data statistics, maximum striation thickness and residence time analyses. The results show that the number of grooves per mixing cycle does not affect the mixing quality in an important way. On the other hand, a larger groove depth and width allow the maximum striation thickness to be rapidly reduced, without increasing the pressure drop across the mixer. Wide grooves, however, create significant dead zones in the microchannel, whereas deep grooves improve the spatial mixing quality

    Impact of thixotropy on flow patterns induced in a stirred tank : numerical and experimental studies

    Get PDF
    Agitation of a thixotropic shear-thinning fluid exhibiting a yield stress is investigated both experimentally and via simulations. Steady-state experiments are conducted at three impeller rotation rates (1, 2 and 8 s−1) for a tank stirred with an axial-impeller and flow-field measurements are made using particle image velocimetry (PIV) measurements. Threedimensional numerical simulations are also performed using the commercial CFD code ANSYS CFX10.0. The viscosity of the suspension is determined experimentally and is modelled using two shear-dependant laws, one of which takes into account the flow instabilities of such fluids at low shear rates. At the highest impeller speed, the flow exhibits the familiar outward pumping action associated with axial-flow impellers. However, as the impeller speed decreases, a cavern is formed around the impeller, the flow generated in the vicinity of the agitator reorganizes and its pumping capacity vanishes. An unusual flow pattern, where the radial velocity dominates, is observed experimentally at the lowest stirring speed. It is found to result from wall slip effects. Using blades with rough surfaces prevents this peculiar behaviour and mainly resolves the discrepancies between the experimental and computational results

    On the ultimate convergence rates for isotropic algorithms and the best choices among various forms of isotropy

    Get PDF
    In this paper, we show universal lower bounds for isotropic algorithms, that hold for any algorithm such that each new point is the sum of one already visited p oint plus one random isotropic direction multiplied by any step size (whenever the step size is chosen by an oracle with arbitrarily high computational power). The bound is 1 − O(1/d) for the constant in the linear convergence (i.e. the constant C such that the distance to the optimum after n steps is upp er b ounded by C n ), as already seen for some families of evolution strategies in [19, 12], in contrast with 1 − O(1) for the reverse case of a random step size and a direction chosen by an oracle with arbitrary high computational power. We then recall that isotropy does not uniquely determine the distribution of a sample on the sphere and show that the convergence rate in isotropic algorithms is improved by using stratified or antithetic isotropy instead of naive isotropy. We show at the end of the pap er that b eyond the mathematical proof, the result holds on exp eriments. We conclude that one should use antithetic-isotropy or stratified-isotropy, and never standard-isotropy

    Imaging Spectroscopy of a White-Light Solar Flare

    Get PDF
    We report observations of a white-light solar flare (SOL2010-06-12T00:57, M2.0) observed by the Helioseismic Magnetic Imager (HMI) on the Solar Dynamics Observatory (SDO) and the Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). The HMI data give us the first space-based high-resolution imaging spectroscopy of a white-light flare, including continuum, Doppler, and magnetic signatures for the photospheric FeI line at 6173.34{\AA} and its neighboring continuum. In the impulsive phase of the flare, a bright white-light kernel appears in each of the two magnetic footpoints. When the flare occurred, the spectral coverage of the HMI filtergrams (six equidistant samples spanning \pm172m{\AA} around nominal line center) encompassed the line core and the blue continuum sufficiently far from the core to eliminate significant Doppler crosstalk in the latter, which is otherwise a possibility for the extreme conditions in a white-light flare. RHESSI obtained complete hard X-ray and \Upsilon-ray spectra (this was the first \Upsilon-ray flare of Cycle 24). The FeI line appears to be shifted to the blue during the flare but does not go into emission; the contrast is nearly constant across the line profile. We did not detect a seismic wave from this event. The HMI data suggest stepwise changes of the line-of-sight magnetic field in the white-light footpoints.Comment: 14 pages, 7 figures, Accepted by Solar Physic

    Transient Magnetic and Doppler Features Related to the White-light Flares in NOAA 10486

    Full text link
    Rapidly moving transient features have been detected in magnetic and Doppler images of super-active region NOAA 10486 during the X17/4B flare of 28 October 2003 and the X10/2B flare of 29 October 2003. Both these flares were extremely energetic white-light events. The transient features appeared during impulsive phases of the flares and moved with speeds ranging from 30 to 50 km s1^{-1}. These features were located near the previously reported compact acoustic \cite{Donea05} and seismic sources \cite{Zharkova07}. We examine the origin of these features and their relationship with various aspects of the flares, {\it viz.}, hard X-ray emission sources and flare kernels observed at different layers - (i) photosphere (white-light continuum), (ii) chromosphere (Hα\alpha 6563\AA), (iii) temperature minimum region (UV 1600\AA), and (iv) transition region (UV 284\AA).Comment: 26 pages, 13 figures, 2 tables, accepted for publication in Solar Physic

    New Insights into White-Light Flare Emission from Radiative-Hydrodynamic Modeling of a Chromospheric Condensation

    Full text link
    (abridged) The heating mechanism at high densities during M dwarf flares is poorly understood. Spectra of M dwarf flares in the optical and near-ultraviolet wavelength regimes have revealed three continuum components during the impulsive phase: 1) an energetically dominant blackbody component with a color temperature of T \sim 10,000 K in the blue-optical, 2) a smaller amount of Balmer continuum emission in the near-ultraviolet at lambda << 3646 Angstroms and 3) an apparent pseudo-continuum of blended high-order Balmer lines. These properties are not reproduced by models that employ a typical "solar-type" flare heating level in nonthermal electrons, and therefore our understanding of these spectra is limited to a phenomenological interpretation. We present a new 1D radiative-hydrodynamic model of an M dwarf flare from precipitating nonthermal electrons with a large energy flux of 101310^{13} erg cm2^{-2} s1^{-1}. The simulation produces bright continuum emission from a dense, hot chromospheric condensation. For the first time, the observed color temperature and Balmer jump ratio are produced self-consistently in a radiative-hydrodynamic flare model. We find that a T \sim 10,000 K blackbody-like continuum component and a small Balmer jump ratio result from optically thick Balmer and Paschen recombination radiation, and thus the properties of the flux spectrum are caused by blue light escaping over a larger physical depth range compared to red and near-ultraviolet light. To model the near-ultraviolet pseudo-continuum previously attributed to overlapping Balmer lines, we include the extra Balmer continuum opacity from Landau-Zener transitions that result from merged, high order energy levels of hydrogen in a dense, partially ionized atmosphere. This reveals a new diagnostic of ambient charge density in the densest regions of the atmosphere that are heated during dMe and solar flares.Comment: 50 pages, 2 tables, 13 figures. Accepted for publication in the Solar Physics Topical Issue, "Solar and Stellar Flares". Version 2 (June 22, 2015): updated to include comments by Guest Editor. The final publication is available at Springer via http://dx.doi.org/10.1007/s11207-015-0708-

    Svestka's Research: Then and Now

    Full text link
    Zdenek Svestka's research work influenced many fields of solar physics, especially in the area of flare research. In this article I take five of the areas that particularly interested him and assess them in a "then and now" style. His insights in each case were quite sound, although of course in the modern era we have learned things that he could not readily have envisioned. His own views about his research life have been published recently in this journal, to which he contributed so much, and his memoir contains much additional scientific and personal information (Svestka, 2010).Comment: Invited review for "Solar and Stellar Flares," a conference in honour of Prof. Zden\v{e}k \v{S}vestka, Prague, June 23-27, 2014. This is a contribution to a Topical Issue in Solar Physics, based on the presentations at this meeting (Editors Lyndsay Fletcher and Petr Heinzel

    Quantum Theory contents insertion in High School curricula

    Get PDF
    A inovação científica e tecnológica do século XX foi esmagadora. Contudo, a nossa experiência docente permite-nos afirmar que as aprendizagens na escola secundária estão longe de acompanhar a evolução que se verifica na sociedade atual. No entanto, já estão a ser incluídos alguns conteúdos de Física Moderna nos currículos oficiais de vários países, parecendo evidenciar uma preocupação em atualizar a preparação dos jovens para o mundo que os rodeia. Neste artigo relatamos um estudo que fizemos acerca dos currículos de Física de alguns países, sobretudo no que diz respeito à Teoria Quântica, a grande invenção do século XX, tentando identificar os conteúdos selecionados e a maneira como estes se integram nas orientações curriculares gerais.In the XXth century, scientific and technological innovation has been overwhelming. Our teaching profession lead us to believe that studies in High Schools do not follow the evolution of ideas that characterizes our modern society. However, some contents of Modern Physics are already included in the official curricula of several countries, which seem to be worried about the improvement of today’s youth training. In this paper we report a study made about Physics’ curricula in several countries, emphasizing Quantum Theory issues, the biggest invention of the XXth century, trying to identify the selected subjects selected and the way they fit into general curricula orientations
    corecore